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An anomalous scaling paradigm that has recently come to be canonical has two features limiting its range of
applicability: The driving and driven fields are separated dyamically and the driving field statistics is pre-
scribed, in terms of thénertial subrangescaling of its second-order structure functions and of white-noise
statistics in time. Then the spectrum of scaling exponents for the driven field, scalar or vector, depends
parametrically on the driving. Here, the coupling of turbulent vorticity to the driving velocity field is consid-
ered. Using simple approximations and no white-noise statistics assumption, equations are derived for the
evolution of two-point second-order correlations. The turbulent magnetohydrody(isidid) case is treated
in an analogous fashion. In the neutral case, the kinematic coupling between vorticity and velocity leads to a
unique prediction for the scaling exponent of the second-order structure functions of the two turbulent fields.
The velocity scaling exponent estimatedis=3Y?—1~0.732, i.e., close to experimental data. Unlike Kol-
mogorov scaling, this result is systematically derived from the Euler equations. The analogous scaling of MHD
fields is now treated beyond the dynamo theory approximation. In contrast to the uniqueness found in the
neutral case, predicted MHD scalings depend on one parameter, similar to the “plasma beta” pagmeter
relating kinetic to magnetic energy. The nature of predicted dependence of inertial-range scaling exponents on
Bt agrees with an observed dichotomy between t8ghand low8+ turbulence regimes.
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I. INTRODUCTION relation is derived in Sec. lll employing two closure assump-
tions. These two sections cover, respectively, the kinematic
Basic notions and assumptions are borrowed from thre@nd dynamical aspects of the problem. Their results are com-
schools of turbulence modeling, in order to build a quasi-bined in Sec. IV, where the ensuing relations between scaling
linear theory forsecond-orderorrelations ofsolenidalvec- ~ relations are derived. Points of interest beside the scaling
tor fields which arecoupledto turbulent velocity in such a €Xponent of isotropic velocity structure functiofis Sec.
way that they influence directly its statistics. The theory is!V A), are also the parallel between neutral and MHD dy-
required to(1) predict the inertial-range scaling of second- h@mics(in Secs. IV B and IV @ and the scaling of helical
order structure functions of velocity and vorticity simulta- COmponents of correlationgn Sec. IV Q. The results and
neously;(2) be systematically derived from the dynamical derivations are interpreted and discussed in Sec. V.
equations, without adjustable degrees of freedom; @d
account for statistical feedback due both to nonlinearty and  A. Three modeling approaches to developed turbulence
to nonlocality induced by the solenoidal projection involved

n t:_]ﬁ momenFurIr.] gqudatlons. d-ord lati b categories, of which three are of interest here. The first is a
Is paper is limited to second-order correlations becausg s of closure theories that provide evolution equations for

these are of greatest interest in applications and also becauﬁ@o-point correlations. These are based on assumptions of
much more effort and perhaps a different approach would bg55i-Gaussianity for low-order statistics of turbulent veloc-
required to deal systematically with higher-order structurgyy fields and on a corresponding low-order closure based on
functions. some “perturbative” approactRef.[1] critically reviews the

The background, motivation, and outline of the proposedearly work on that approaghBy construction these closures
approach are given in the remainder of this section. The preare limited only to low-order moments and neglect the inter-
sented result is argued to be a step in overcoming severahittency due to flow structure. Their subject is the flow of
hurdles that have so far kept one of the major problems, thagnergy(Ref. [2] provides a classical example and set of ref-
of anomalous scaling of turbulent velocity, in turbulenceerencep Their standard formulation is for homogeneous tur-
theory unsolvable. The paper contains only analytic compubulence, in terms of averaged Fourier mode interactions.
tations. The necessary background from tensor calculus, as The second category is that of “structural” models treat-
used in homogeneous isotropic turbulence, is presented ing small-scale vorticity fluctuations gmassively driverby
Sec. Il. It contains all kinematical relations needed later inlarger-scale motions. Their natural formulation is in terms of
Sec. IV, in particular, the relation between scaling exponentphysical-space flow configurations, at least for the large-
of vorticity and velocity correlations. An important point in scale motions which are modeled as simply as possible. The
Sec. Il is the argument that correlation decay and structuraonlinear feedbackmechanism remains an issue open for
function growth in the inertial range are given by the samemodeling and discussion. One extreme of the “structural”
exponent. The equation for the steady-state vorticity autocormpproach is represented by the exact solutions of the Burgers

Estimates of turbulence statistics fall into several large
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vortex [3] kind, in which dissipative-scaldlow structure is  with explicit proportionality constant in the scaling law, is an
important and feedback is neglected. The statistical aspeeixact result due to Kolmogorov. Except for this special case
has always been at least part of the motivation for work ormg=3, the above Kolmogorov scaling fgf, is based only on
the “structural” approach, including classical solutions for a dimensional argument and is known to fail experimentally.
vortex tubeqd 3] and vortex sheetst]. Representative experimental and numerical results can be
At the opposite extreme, the effect of flow structures isfound, e.g., in Refs[8—10]. As for models, it was already
described only in terms of high-order turbulence statistics. Irmentioned that incorporating more turbulerigenomenol-
the “anomalous scaling” paradigm, their effect is measuredogy can improve model predictions. Below are discussed
as deviation in power laws, by which structure functions oftheories based on the explicit use of the dynamical equations,
turbulent fields scale in space, from theoretical estimates afather than only on heuristics, for inertial-range scaling ex-
corresponding scaling laws for “structureless” random ponents of passive scalar and “passive magndticigneto-
fields. The variety of models for such deviations pertinent tohydrodynamic (MHD) dynamo regimg fields. But such
different turbulent fields constitutes the third “scaling” cat- fields do not feed back on the driving velocity field whose
egory. statistics ardconveniently prescribed in such models.
Successful two-point closure models are compatible with  To the author’s knowledgésee alsd11]) there is no ve-
the best known among two-point statistics, the Kolmogorovocity scaling theory forZ; with g+ 3, derived by explicit
scaling for the isotropic kinetic energy spectrufi(k)  use of the incompressible Navier-Stokes equatitdSE).
k=553, or alternatively, for the second-order velocity struc- The main result of the present stuffgq. (52) below] is an
ture function, S¥(2|r)«r?3 where r=(r-r)¥? is the  analytic derivation of the isotropic velocity scaling exponent
(inertial-range separation between two points at which the /% hased only on two explicit, qualitative, approximation as-

velocity is measured. But they are by construction unable t@ymptions and, on thexplicit use of the dynamical equa-
address anomalous scaling. Successful “structural” modelsjgns.

combining statistical and deterministic elements, are also

compatible with the classicaE(k), as shown first by

Lundgren[5]. Relatively successful “scaling” models tend C. Rigorous theories of anomalous scaling

to involve heuristics about the physical-space structure of Recently, the theory of anomalous scaling of structure

turbulent fields, which was the basic ingredient in the “struc-fnctions of passively advected fields based on dynamical
tural” models. The She-Leveque mod@] may be an ex-  equations has enjoyed great progress. Much has been estab-

ample. In particular, they predict a8'(2|r)=r¢ with £, |ished not only for the classical case of isotropic turbulence,
slightly larger than 2/3, a tendency established also by actugjyi also for the scaling of anisotropic components of two-
measurements. point statistics. A recent overviejit2] of the passivescalar
field case contains the set of basic results and references.
B. Anomalous scaling of velocity correlations Further general results can be found113]. The scaling of a

There is a large number of publications concerning theP@sSivevector field is more complicated to compute. The
measurement of scaling exponents in Navier-Stokes turbuﬁca“ng of second-order correlations of a general anisotropic
lence and producing models to fit these observations. Velod2@ssively advecteHD dynama vector field was reported
ity structure functions scale with different powegsdepend- N [14]. The isotropic case was solvetb] earlier. (The ear-

ing on their order; liest works on dynamo theory, for whidii6] serves as an
example and reference source, are concerned with the aver-
SV(q|r)=<|va(x+r)—va(x)|q>x~r§3 (1) age of the magnetic field itself, i.e., with single-point, first-
a .

order statistics. There are, of course, both fundamental and
technical similarities with the case of two-point correlations.
A quite general viewpoint and list of references is offered by
. . . O [17].) Despite this progress, there are two aspects in which
:Vl' A dimensional isotropyassumption is implicit when the " jiterature on anaomalous scaling remains unsatisfactory.
S%(q|r) (dependence is simplified to a scaling law fin First, the advecting velocity field is assumed to have a
S;(qlr) is called the(orderq) longitudinalvelocity structure  \yhjte-in-time autocorrelation. This means that fhessively
function andS;(q|r) = Sy(q|r) the correspondingransverse  advected field has much longer memory than #otively
structure function. Aomponental isotropgssumption is im-  advecting velocity field. Such an assumption is of rather re-
plicit in the latter equality. Whether both longitudinal and stricted relevance as a physical model. Except for the case of
transverse structure functions of the same order scale with scalar diffusivity much larger than viscosity, which is of no
precisely the same exponent, as implicit in the notation ofnterest in our inertial-range discussion, the scalar field cor-
Eq. (1), remains an open issue. Under certain conditions theelation scales should heommensurafefunctions of those
theoretical prediction is that they do, while measurements argf the velocity field. The reason why the white-noise model
not conclusive. This issue is beyond our present range ofas first introduced by Kraichngri8] and then persisted in
interest; some related references are briefly discussgd.in  the literature, sometimes slightly modified as, e.g.[18]

The anomalous scalingssue is about measuring and ra- and[16], is that it greatly facilitates analytic treatment.
tionalizing the deviation of these exponents from tige Second, analytic results concern only passively advected
=(/3 scaling. The famous “4/5 law” giving;=1, complete fields. The NSE that governs the driving turbulence itself has

Velocity componentai=1, 2, 3, are taken with respect to the
direction of r, which will be assumed to correspond &0
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remained largely without treatment, presumably because dfcity and velocity autocorrelations. The latter is a kinematic
two technical difficulties related to the particular kind of relation, leading to a simple relation between the scaling ex-
nonlinearity present in the underlying dynamical equations.ponents of the two autocorrelations.

(1) A quadratic coupling between the driven and driving ~ The evolution equation for the vorticity correlation tensor
fields, precluding any direct approach by the linear theorieds in a form identical with that of the MHD dynamo formal-
mentioned above that yield elaborate results for passivésm. A prediction of isotropic magnetic-field correlation scal-

fields; (2) the nonlocality of solenoidal projection, i.e., the NG in dynamo turbulence due to R¢L5] gives aspectrum
presence of a “pressure term.” of values depending on the scaling of the driving velocity

field. It agrees with the isotropic MHD scaling prediction in
Sec. IVB below. Unlike dynamo theory, however, the
present paper deals with the coupling between MHD current
and magnetic-field statistics in parallel with the vorticity-
elocity coupling. The magnetic-field feedback through the
orenz force term is included, and magnetic energy is no
) . . . . X longer assumed negligible. This leads to a qualitative agree-
ity was white noise and its statistics were prescribed; Onlyment with an important feature observed in MHD turbulence
those of a separatdvectedield were solved for. The diffi- __ dichotomy between high; and low-3; regimes.

culty of treating the pressure term was explicitly emphasized A major concern of this article is to relax the unphysical
inthat work, which remained confined to the two- a55umption imposed on the *driving velocity” in Kraich-
dimensional case in order to alleviate some of the difficulty.nan’s model, or its technical substitute in the form of a “lin-
The present Work was motivated by diSCUSSiOI’]S W|th th%arization assumption’” found in Various guises in

authors of that model. Theory can actually be advanced i|p23,21,2(1 and elsewhere. The linearization approach in
both aspects pointed out as unsatisfactory while the tWhose works models turbulence as a two-phase fluid system,
mentioned technical difficulties are avoided rather than atyherein the “small-scale fluid” is passively advected by the
tacked. “driving fluid.” To avoid the need to justify and then carry
along a two-phase model, symmetries of the dynamical equa-
D. Quasilinear theories tion are used here to make important truncations and then

Several recent attempts to model the small scales of tuQNly Steady states are sought. ,
bulence have been very successful in capturing at least the SOMe closure assumptions are unavoidable. The neglect
main qualitative features of statistically steady turbulento! Cross correlations mentioned already is supplemented by a
flows, including two-dimensional2D) isotropic turbulence negle_ct of fourth order cumulants, as in classmal_ _closure
[21,22 and 3D wall turbulenc23,24). The essence of these theories. Both assumpuons_ can be given some gmpmcal sup-
quasilinear, or rapid-distortiofRDT) approaches is to model port for second—qrde.r statistics over the |nert|a.I range of
small-scale vorticity as passively advected by the velocit)Jength scales, which is precisely our present subject.
field. An obvious motivation is that in flows with a devel-
oped inertial range the peaks of energy and enstrophy spectra Il. KINEMATIC RELATIONS
are located beyond the opposite ends of that range and
thereby widely separated. Since energy flows in 3D toward
smaller scales, where the vorticity peak is, it can be assume
that the field structure of vorticity is irrelevant to the spatial V.v=V.w=0, o=V Xuv. (2
distribution of energy, which is dominated by the large-scale ) . _
flow eddies. But vorticity is coupled to velocity, both kine- "€ corresponding second-order, two-point, autocorrelation
matically and dynamically, so there must be at leastatis- ~ t€nsorsv and Q) are defined by
tical me.chanism for a feedback. Differt_ent publiqations resort Vap(F0) = (0a(X, D) op(X+1,0)y 3)
to a variety of conceptual models of this feedbécicluding
the no-feedback casand to a corresponding variety of for- and similarly forQ,,(r,t). Averaging is over ensemble and
malisms. also, as indicated, over the flow domain. When the length

In this paper, the spatiafoss-correlationdetween veloc-  scales of the domain and the forcing are much larger than the
ity and vorticity is assumed to beegligiblecompared to the scales of interest, these correlations tend to become isotropic,
product of velocity and vorticity autocorrelations This is  and will hereafter be assumed such.
made only for the purpose of approximating two-point, low- In the literature on anomalous scaling, the customary ex-
order, inertial-range correlations. It is essentially a quasilinfposition is not in terms of “bare” correlations such 85,
ear assumption motivated by the above separation-of-scalémit in terms of structure functionéSPH. For example, the
argument. Solving for the vorticity scaling allows one to second-order velocity SF is
avoid any consideration of pressure and pressure-velocity v
correlations: While the equation for the second-order veloc-  Sab(F) ={[va(X+ 1) =va(X)][vp(X+1) —vp(X)])x
ity autocorrelations qulves the _nonlocallty of th_e_ NSE =V,(0) = V(1) (4)
through a pressure-strain correlation, that for thogticity
autocorrelations involves instead an implicit coupling of vor-using homogeneity in the second equality.

Even if boundary and curvature effects are neglecsesd
usua), nonlocality remains in any of the form@dvection,
vorticity, velocity potential in which NSE may be cast. In a
recent responsg20] to problem 2, anomalous scaling was
studied in a model equation including a pressure term aml\ii
allowing for anisotropy. But even there, thevectingveloc-

Let v(x,t) and w(x,t) denote, respectively, the velocity
d vorticity fields. By definition,
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To recover the notation of Sec. I, let sion of — V2, will only defineQq(r) up to an arbitrary mul-
tiple of r2, i.e.,cq#0 in Eq.(14).
SY(2|r)=SY(r)
with no index summation. In what follows, summation on B. Scaling range isotropic form
repeated indices is assumed throughout and the following Here we consider only the “scaling range”<Qry<r

shorthand notations are used: <r_, wherery is a dissipative length scale amg is an
“energy containing” scale, comparable to or smaller than the
r=(rj2)1/2, dj=alary, box size. In this case it is possible and advantageous to ne-
glect boundaries im.
Ea=Talr=0ir,. Correlations are expected to decay with distance in physi-

) cal space. In the scaling range, the decay is assumed alge-
Note &7=1 anddpéa= (dan— &aép)/r, Whenced;§;=2r and  prajc. Such scaling is expected to set in when statistics relax
Ip(Eadp) =28alr. to a time-independent state. Denote the decay exponant of

o _ _ by X\>0. Then
A. Representation of isotropic correlations

Assuming isotropy say fov, its classical physical-space gv=r", fy=r=*v2/[(2-\y), (19
representation in 3D is - _
Qu=—r?"M(2-\)?, (16)

Van(r,1) = Sap@u(r,t) + &adp[ fu(r,t) —gu(r,H)], (5
up to a constant multiplier. Boundaries have been neglected
gu(r,t)=r"29,r2fy(r,t). (6) here, and both integrations produci@g from g,, have been
performed between and«.
Due to isotropy, dependence on distance can be factored into From Eqgs.(16) and (14), requiring decay of2, one ob-
fy and gy . Analogous relations hold for isotrop®@, with  tzins the following analog of Eq16):
corresponding , andgq, .

Treating homogeneous statistics rigorously, one necessar- QQ/AQ(XQ,): —rz—xn/(z_xﬂ){ 17
ily works in a domain periodic in 3D space. The existence of
well-behaved Fourier transforms for all considered fields will Ao(a)= a’(a—3)/(a—2),
be assumed. Thevi and its Fourier transfornt can be rep-
resented by No=Ay+2. (18
Vab(K,t) = Pap(k)Qu(k,t), (7) With V~r v decaying, Eq.(4) shows thatS’ has to
A grow withr. The standard assumption is that there is a scal-
Pap(K) = 85— Kakpk 2, (8) ing range wheres’~rM with \,>0. The analogs of Egs.
(5) and(15) are then
gu(r,)=—r"19,13,Qy, 9) y y
Sap(N) = SOI’}‘V, Pab(Av:8), (19
fy(r,t)=—2r"1,Qy, (10)

. Pab(N; &) = dap— EabM(2+N),
with Qy(k) and its inverse transforn@y(r) being well-

behaved scalar functions. Analogous relations holdGgr. fsur)=r™vai(2+1y), (20)
From Eqgs.(2) and(7), using the alternating tensor notation _ oy
€abe N (@XD),= €apjanby, ONe obtains P (k) Qg (K) gsvr=r=,
= KiKj €aimenjnPmn(k)Qu(k), which can be simplified and and similarly forS®. It is noted thaw?P,,(\ +2;£) cannot
transformed to physical space: be written asA p(A)Pap(A; ).

N . oA Later it will be seen that the equilibrium state equation is

P(K)Qa(k,t)=P(k)k“Qu(k,t), (1D formally the same for bott2 and S®. Here it will only be

) verified for any couple/ andSY related by Eq(4), that
P(NQa(-,t)=(=V9)P(-)Qu(-,1), (12)
=-X 21
V2PQ=Q-VV.-Q, (13 A=Ay @Y

2 w2 2.2 and, of course) o= —Xq=2+\y, in an appropriate scaling
Car+Qo(r)==VQu(r)=—r"%ar°9,.Q(r). (14 range. The argument is the same fpy,gsy couples and

Herel is the 3D unit matrix anctq, is some constant? fV’fﬁV couplesi Suppressing the suffix,, consider g

is kept on the left-hand side in E¢L2) since it has a non- ~T " andgs~r*. From Eq.(4) gs(r)=gs(0)—g(r). Up to

trivial kernel: Span (21). A formal application of Eq(12), ~ an irrelevant prefactor, this reads in the scaling range as

neglecting the boundary conditions needed for proper invergg(r)=c—r~*, where 0<c=0(1) is a constant. Now
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<1 in the scaling range, rendering the rational approximation Amdnl “TPam(N; ©Hpn(&) + Ppn(N; & Ham(H)]
gis\féi:Equ./((zll)J.FrXC) acceptable. Comparison with E(R0) (o= 1)r"2(Hy+ Hy) = O, 32
The above argument suggests to modify Ef) into ImInl “[Pab(N; E)Hmn(E) +Prmn(X; §)Hap(8) ]
s =0gsu(0)—1 ", (22) =[3(0—1)=2(c+2)\]r" *Hap(). (33)
fsUr)=gs0)—r 22/(2—X\), (23 Using Eq.(28), the analogs of Eq$11) and(12) are found to

N , be hg (k) =k?hy(k) and hg(r)=—a7hy(k). In the scaling
Qs =Qsv0)=gs0)(r/2)"+r*"*(2=N)% (24 range, the relation betwedn, andh,, is then given by Eq.
(29): If hy=r"* thenhg=Ay(Xo)r 22 with Ng=Ny+2

and similarly forgso ,fsa, andQsq - In particular, as before. However\, differs from A given in Eq.(17).

Qen=A4gs\(0)+dsa(0)(r/2)2—r N[ 1(2—\) +1]}.

In the lspeC|aI dcatlﬁa=2£ the _velobcny f?rrﬁ{z/mon; arelfnot Our subject is inertial range scaling, so the dissipative
anomalous an €afp term is absent fronV and s, . term in the vorticity evolution equation is omitted:

A =0, the same assertions apply to the vorticity field instead.

The terms representing anomalous scaling are absent ( dw=(w-V)v—(v-V)w. (34)

=g) in those cases when their denominators would vanish.

This corollary of the Euler equations is formally identical

with the inviscid MHD equation for the magnetic induction

) ) ) b, but the latter must be coupled with either the momentum
Relaxing the isotropy constraint on a tensor means that itg, vorticity equation of MHD. Upon normalization,

scale dependence can no longer be expressed only using the

traceQ(k) or Q(r). Since TFQ(k)] is invariant to rotations db=(b-V)v—(v-V)b, (39

of the k-coordinate system, a minimum extension is to in- ) )

clude another such invariant. The simplest among few dw=[(@-V)v—(v-V)ew]=[(j-V)b=(b-V)j],

Ill. DERIVATION OF A STEADY-STATE EQUATION

C. Representation of helicity

choices is (36)
Ras(k,1) = eanjikjA(K,), (25 J=Vxb, V-b=V-j=0. 37
- The analogy between Eg&5),(37) and(2),(34) is exploited
an(r,t) =Hap(Eh'(r,1), (26)  in dynamo theory by neglecting the Lorentz term in E36),
so that it becomes the same as Ef}), on the assumption
Hpq(g):qujgj . (27) that|j|<|v|.
Here h is the Fourier transform ok, h'=sh/ar, 1 is the A. Equations for steady-state correlations

imaginary unit ande,,; is the alternating tensor.
Unlike Tr(Q), h,p(r) is not reflexion invariant. Strictly
speaking, helicity is related only to the real parthgk), but

both ﬁ(K) andh=n’'(r) will be loosely referred to as “he-

licity.” Incompressibility does not restrich: €,p;d,&,h=0 .

_always_ holds. The relatlc_)n bet\_/veen scall_ng of helical and _j (v-V)o(x,7)d7.

isotropic parts of correlations will be considered later on. It 0

may be helpful while following some computations in Sec.

IV to note that Repeating this fow(x+r,t) and recalling Eq(3), one ob-
tains the spatially local equation

From Eq.(34),

w(X,t)— w(x,0)= ft(w- Viv(x,7)d7
0

€ajm€jbn— 0abSnm™ SanSbm> (29)

t
= [1]
Han(£) £aép=0, Qap(r,t) Qab(r’0)+foﬂab(r17)d7

P Ha = Ao PHa(H, (29 + | [0l . rdrdr,, (9
0JO

Apy(a)=o(o—1),
. 7 QL (r,t) =(wa(0,0)0(+, vy j(+,1)) —(wa(0,0)v;

ImInl [Ham(EHpn(§)1=0, (30 (+vl)wb,j(+!1)>+<wb(+lo)wj(oal)va,j(o!1)>
Imnl “[Han(§)Hmn(£)]=0, (31 —(wp(+,0)vj(0,)wp j(0,1)), (39
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Q[,fg(r,tl,tz):(wj(o,l)va‘j(o,l)wm(+,z)vbym(jL,2)> moments. This reduction is in the spirit customary in two-
point closure theories dealing only with turbulence spectra,
—(0j(0,)v,(0,Dvm(+,2) wp m(+,2)) e.g., Kraichnan's direct-interaction approximation or
Orszag's eddy-damped quasinormal Markovian clogife
+(0(0,) @a,j(0. Do m(+,2 wpm(+.2) The expectation, which can only be justified by comparing

theoretical predictions to experimental data, is that flow
—{(vj i + +,2)). X o Lo o
(vj(0.Dwa (0D on(+.2vpm(+.2) events leading to a deviation from Gaussian statistics are
(40 more or less the signatures of dissipative-scale vorticity
structures and therefore not expected to influence signifi-

Notations like cantly the lowest-order inertial-range statistics. Approxima-
tions of this quasinormal nature are clearly not applicable

®a(0,) = wa(X,-), when the scaling of high-order structure functions is investi-
gated, because anomalous scaling is a manifestation of the

wa(+,+) = wa(X+r,-), increasing degree of non-Gaussianity of the velocity statis-

tics going downward in the inertial range. Even if limited to

wa( =)= wa(X—T,-), second-order statistics only, one is confronted with serious

, , difficulties in modeling adequately the neglected terms in the

used in averages with respectxtoand case of anisotropic turbulence. But our present topic is con-
-~ fined only to second-order isotropic statistics, so making a

wa( D)= wa(- 1), high-order closure assumption is at least not obviously un-

reasonable. Hereafter, fourth-order cumulants will be ne-
glected outright. This is the simplest and crudest approxima-
B tion, notorious for being showfa posteriorj to fail in the
Wa,j= Jjwa, spectral theory of isotropic turbulence. How good or bad it is
. . . . for the present purpose, however, or as a matter of course,
are mtrodyced fpr brevity. Usmg homogeneity anq E2), for strongly anisotropic turbulence spectral computations,
the term in the first brackets in EB9) can be rewritten as .., he found out agaia posteriori Before that, there is no
9jWa,bj(—r), where compelling reason to introduce any modeling of the ne-
. _ A _ . glected cumulants. Several decades of experience in spectral
Wa pj(£1) ={0a(*,0)[0j(0,1)v,(0,1) — wp(0,v;(0,1) ]} theory have shown that such modeling is rather demanding
both technically and in terms of justifying its underlying as-
sumptions and parametric choices.

wy(- 0= wa( -,0),

is antisymmetric irb,j. Starting from the general form

W =W - (W&o S Wonfr 8o+ Wk S Although cross correlations entering the result will be
aby = Warkaboé; F (Waakadoy + Worlipdja+ Wast Sav) only single-point ones, their contribution does not vanish un-
+ (Woi€pjpéat Wozejapén+ Woz€abpén) &p » less (w4(0)vp(0))=(vp(0)wy(0)). Instead of insisting on

such an equalitywhich obviously does not hold in general
where allW,, are functions ofr andt, application of the an order-of-magnitude argument can be made, based on ex-
incompressibility condition gives (£rd;)We;=0 whence perimental observations; it then leads to a second approxi-
Wp;=0 for j=1,2,3. Antisymmetry reduces the coefficients mation, invoked in order to dispose of the cross correlations
of isotropic terms:W, ,;(—r) =W(r)(§;ap— €n6aj)- Thus  for which a separate equation must otherwise be kept along.
3jWa b= San(W' +WIr) — £,£,(W' —W/r). The term in the  One such observation by this author concerns statistics from
second brackets in Ed39) can be rewritten ag);W,,;  direct numerical simulation$DNS) of 3D isotropic turbu-
(+r). But W(r) is even, so the two terms sum to zero andlence at 512 resolution, for which a detailed account still
leb]zo from symmetry considerations only. Since remains to be published. Fourier spectra of cross correlations
Qll(r,t)=t[QB)(r,0,0)+ O(t)], Eq. (38) transforms, us- were computed and seen to be strongly fluctuating. But their

ing homogeneity again, into “envelope spectra” can be defined reasonably well over the
inertial and dissipative ranges and appear close to, but below
T ap(1) = 9 3mM apje(T 1), (41)  the corresponding velocity spectra, by about an order of
magnitude. Of course, vorticity spectra are orders of magni-
Mapjm(r,t) =[{@j(0)va(0) wr(+)vp(+)) tude larger in those ranges and growing with wave number.

This suggests to neglect cross correlations as being “small”

~{wj(0)va(0)vm(+)wp(+)) compared to autocorrelations.

+(0;(0) 0a(0)v m(+) wp(+)) To summarize, the present derivation is based on neglect-

ing all (i) fourth-order cumulants ang@i) cross correlations.
—(vj(0)wa(0)wm(+)vp(+))].  (42)  Within the applicability range of botkqualitative assump-

tions,
Only single-time correlations appear in H42).

At this point, an approximation can be made by neglect- Mapmd V,Q1(r) =[Qap(r) V(1) + Vap(r) Qmn(r)]
ing fourth-order cumulants or modeling them in terms of the
second-order statistics directly solved for in the model. It —[Qam(r) V(1) +Vam(r) Qup(r)].
will reduce all terms inM(r,t) to products of second-order (43
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It is possible to puM[SY,S?] instead ofM[V,Q] into Eq.  (46) multiplied by Q,Qq, , from helical parts only, terms that
(41), since djdyM(r)=3d;0,[M(r)—M(0)]. It is also pos- vanish due to Eq(31); from cross multiplication of helical
sible to putM[SY,Q] instead, substracting froml 4, () and isotropic parts,

the terms(w;(0)v,(0)wy(+)vp(0)) and (vj(0) w,(0)vnm

(+)wp(0)) which vanish under the action of,, and ajam{QVhQr*(“ﬁ)M[P(—)\;g)H(g)]
then adding the termgw;(+)va(0)vm(+)wp(+)) and .
(vj(+)wa(0) wn(+)vp(+)) that vanish undes; . +Qqhyr ~IMIP(— w; HH(E) 1}
This nonuniqueness in the choice of statistics invites the vt at2) -
use of(V,Q) as a place holder for any possible couple of =—[Qvhar ET9x (N 1)
“velocity,” “vorticity” statistics, in that order, as indicated. —(u+h+2) -
Then Eq.(41) suggests the steady-state equation +Qohyr X M) JH(E). (48)
VV:M[V,Q]=0. (44)  The form of y in Eq. (48) results from Eqs(32) and (33),

which imply together with Eq(44)
Precisely the same equation would follow from the MHD

induction equation i€} is to be understood as the magnetic- 3;0mMLI*P(N; €),r*H(]=—x(—\,— w)H(&), (49
field autocorrelation, and if the cross correlation between the
“driving” velocity and the “driven” magnetic field is ne- XN, ) =(3+2N) (A +u)+(3—4N). (50)

glected on the basis of an analogous justification. The MHD

vorticity equation can be treated similarly. The complete sefrom Eqs.(44), (46), and (48) follows a “dispersion rela-
of steady-state equations in the MHD case then reads tion” for A and & in terms of\ and u:

VV:M[V,B]=0, . R . R
(ha/by)r* M x (N, w) +(Qa /Qu)r* ™ #x(m,\)=0.
VV:M[V,Q]=VV:M[B,J], (45) (51)
again subject to possible replacementvoby SV, B by S2, Depending on the relation betwe&hand € , this equation
etc., in any occurrence . may either be split in twoy(\,)=0 and y(u,A\)=0, or
otherwise, it is sure that there is a relation betwkesnd u
IV. SCALING PREDICTIONS independent from Eq51).

At the outset, let the scaling &@~r~# be formally in-

dependent from that of~r*, to allow derivations to be A. Scaling of isotropic correlations

reused in the MHD case. For convenience, let Now Q may be interpreted as theorticity correlation.
B _ Anticipating the outcome, consideM[S,Q)] replacing

Ntpu=o0y, o1+2=—0, M[V,Q] in Eq. (46), thus making the association= X\, and

M2+N)+ ul (2+ ) =205. Mm=N\q . In addition, the constraint,=—(\y+2) holds in

view of Egs.(18) and(21). In that case one of the solutions
With these notations, recalling Sec. Il B and ignoring con-to Eq.(47) in terms of\ is negative, which is unacceptable

stant factors, the isotropic scaling version of E4g) is for a structure function scaling. Thus we are left only with
9;0mM abmd V. 1/2= 3;df ~ 1 ( 82jSpm— SapSjm) Lr~Ay=3Y2—1~0.732. (52)
+02(EaébSjmt €j€mdan™ Eakjdbm Instead ofM[SY,Q] it was possible to usM[V,Q] or
— &pémdap) 1=[1(02— 1)+ 0] M[S~,S Jor M[V,§ ] |r.1 Eq.(46), the dliffer'ence being only
that u—u or A—\. With these substitutions Edq47) re-
X[=0o1Pap(og; 1] (46)  mains formally the same, but the additional constraint

_ . changes. Only one more physically acceptable solution can
When o, =0 the term—o,;Pap(00) is replaced by 2a8y.  pe gpained after checking all possibilities:, = (2/3)'2

The isotropic eigenvalue relation becomes ~0.8165 fromM[V,{1]. In comparison with E¢(52), it pre-

_ dicts faster decay of correlations with increasing distance
NN+ ul/(2+p)=2N+u)/ (N+u+1). 4 . "
( Jtul@t =20+ It utd). (@47 leaving Eq.(52) as the prediction for actually observable

When helicity is taken into account, the scaling forms ofscaling.

the tensor arguments M[V,Q] are Kolmogorov scaling means, =\ =2/3. A list of recent
R experimental results of, might include the following esti-
V() =Qur *P(—\;&+hyr (&), mates: 0.688 0.002 form a 512 DNS with R, =218 [8],
0.708 for atmospheric surface layerRt=10 340 and error
whereQy, andh,, are now constant, and similarly f&(r). bar illegible[10] but presumably of the same order as above,

Inserting these on the right-hand side in E4p) gives sev- \,=0.70 and\;=0.68 with differentiation between longitu-
eral contributions as follows. From isotropic parts only, Eq.dinal and transverse exponents, for surface layer {@fa
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with R, =10340-14860 and error bars “difficult to quan- B, ! Ay, ?
tify” but conservatively bounded by 0.02. The cited mea- 129— : /’ x
surements suggest an experimenta=0.70=0.01 if A, is i i/ //"‘\V\
used as “isotropic value.” The deviation afy and\y from 08 e ﬂl/( """""""""""" ’\ :
this Ag is —4.7% and 4.6%, respectively. 04 2 BBV ERTYY

Thus, prediction(52) is quantitatively as good, or as bad, i /fﬁ T
as the Kolmogorov scaling, but qualitatively better in the 0.0 —F N
sense that it predicts the direction in which the anomalous 1 A
exponent deviates fromy . The overestimate is rather small -04 1 A
in view of the approximations made. Indeed, ad hoc o 05 1 5,2 25 3
modification u =\ +2.062 would yield\,,=0.7002; this is #
to be compared with thad hocsubstitution of{ Av(r)3) by FIG. 1. Isotropic8-dependent MHD scaling; dots, nonmagnetic

{|Av(r)[?) which is empirically=(Auv(r)®*%according to  \y=32—1; solid curve\y(\g); dash-dotteds(\g) with vertical

[10]. Since\g are frequently estimated using the extendedine indicating 13=0.
self-similarity hypothesis that introducédv (r)3), the error
of such measurements can thus be comparable, in principlphysically reasonable range of eithgy or A g between 0 and

to its difference from theory. say 3. The solution can rarely be represented conveniently in
terms of eithei\y, or Az as free parameter.
B. Isotropic MHD Clearly the search for acceptable solutions is tedious and

. thus error prone. To the extent to which this author has been
In Eq. (45 a triple O,f argumenté,[V,B],[\_/,Q],[B,J]} able to deal with it, there are only three kinds of solutions:
appears. All triples obtained from it by substituting any NUM-Eirst Aa=xo=3Y2—1 as in Eq.(52). This solution arises
ber of tensor arguments by their structure function counterfrom’{[BSv B\]/ [SY,0],[SB,J]} and is valid for anyB. Sec-
i \/ B ’ ’ ’ y y .
parts should be considered, eqs ,BL,[V,Q],[S ,SJ]}, ond,)\B=)\V=(2/3)1’2 as in the second value obtained in the

{[SY,SP1,[SY,Q],[SB,J]}, etc. Recalling again Sec. Il B, netic case. This comes fr B1 [V .O1[B.J
each of the three terms in each case can be obtained from Egﬁgr?saglso valid for ang. Finally qa'ﬁzér;ﬁ[\et’er-]d[epér}éent
(46) by a triple of appropriate redefinitions of, o5, ando. amily of solutions arises from{[SY,B],[SV,0Q],[S8,J]}
The resulting eigenvalue problem is then cast in the form o hen g is allowed to be part of the solution:
algebraic equations, given by '

p(VY AB)=0, (53) Av(Ag)=(AgT+A—3)/2, (56)

PO AY) = Bp(ENE), (54 BNe)=(N/A(1+A=Ng)(1+A+Ng)"h  (57)

together with the definition A(Ng)=3(1+Ap2/3-75/3)™, (58)
p(a,b)=(a+b+1)[a/(a+2)+b/(b+2)]-2(a+bh), shown in Fig. 1. The solution agrees with the scali&g) in

(55 the limiting case of vanishing velocity field B~ 0) as seen
at the crossing of dotted and dash-dotted lines in Fig. 1, and

and a set of linear relations betwe)e]ﬁ and\y, and between  of course in the limit of nonmagnetic turbulencg=0). As
N} and \g. (The value of 3~ in the present context is in the nonmagnetic case, the fixed value (¥/%an be dis-
related to the MHD “beta” measuring the ratio of total carded in favor of 32— 1, which in turn is to be compared to
kinetic to total magnetic energy, but the relation is diffi- the value ofn, from the 8-dependent solution. The qualita-
cult to quantify and need not be universal. To be precisetive outcome is a plausible prediction that the same scaling
the second equations in Eqg45 and (53) predict as in nonmagnetic turbulence holds, except for sufficiently
[BAo(Ng)/Ag(Ny)]"? as the ratio between magnetic and “low-beta” flows. Complex behavior is predicted in the
kinetic correlation9. Two possible approaches to such a sys-g-range wheren,<{,<\g.
tem are either to solve for all variables, includiBg raising Due to the equations’ symmetry, there is another solution
the problem of its interpretation, or to require a solution validin which \,, and Az exchange roles. This is the solution
for any 8, thus splitting the second equation into a pair ofgiven by [15]. In it, the magnetic correlation has longer
independent equations(\y ,A3) =0 andp(\5,A5)=0. For  range than the velocity correlation, agd* is proportional
any of these approaches, and for each instance of an argte the MHD “beta” parameteiB;. But the qualitative out-
ment triple, a set of several solutions is obtained. Each solueome remains the same. [5], only Eqg.(53) was consid-
tion has to be checked and rejected if it includes imaginanered, without coupling to Eq(54), and noB; dependence
values, or if the sign of eithe)n}’ or )\J-B is not as expected was found. The appearance®fs clearly due to the Lorenz-
from the imposed relation withy ,\g, that is, if a structure force coupling.
function scaling turns out negative or a correlation decay Other qualitative features of the solution are worth notice.
exponent turns out positive. In some cases, not a single so- (i) \y<Ag throughout.
lution but a one-parameter family of solutions is obtained, (ii) For Ay=<{,, which is the range of interest herky,
which have to be scanned for admissibility at least over th@nd\g are close to each other. This meang(Ag)/Ag(Ay)
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k() =8u>(8u3+60u?+138u+ 119 — 5(294u>

+1569u+115), (62

0.5 k() =8u3(32u8+208u” + 94415+ 254Qu°+ 2948u*

LT T~ Ay
0. 3 T +3265 — 291952+ 3564 +5184. (63)
a~ o
0.5 Ay S o . .
v ~ o To enable some of the computer algebra in the case discussed

next, this solution had to be Padpproximated, as shown by

FIG. 2. Solution branches for “helicity” scaling in a vorticity- @ dotted line in Fig. 2. Calculations and plotting were done
velocity (or current-magnetic fielddependencésolid line) and a  USINgMATHEMATICA .

Pade(3:3) approximation to it(dotted ling. The unphysical lower When anisotropic tensors are allowed in the MHD case,

branch is shown by a dashed line. the relation between,,, \g, and B through Eqs(56)—(58)
must be accounted for. From Edg5) and (51) follow

is close to 1 and the use @ from Eq. (57) is sufficient for

the present qualitative discussion.

(iii) The extremeg3=0 andB— are present in the so-
lution and exponentd become arbitrarily close to zero as
B—1 (presumably corresponding to “loy+” turbulence. . R

(iv) The rangeB<0 is unphysical, while a small range of ~ [(ha/hV)r*=x(\y ,Aq)
positive values is not covered @ in this solution. N S 20wt

A more in-depth evaluation of the present result requires +(Qa/Qu) 1™ 2 x(N o , AV)Ir Vi hyQy
comparison with scaling data from MHD turbulence at vari- _ Y -
ous ratios of kinetic to magnetic energy. Such comparison =BlL(hy/hg) 178 78 x(Ng hy)
remains beyond the scope of this paper. +(Q/Qg) NN y(hy Ag)]r 28N D hQg.

(he/hy) ™2y (hy Rg) + (Qa/Qu)r*e 8y (ug Ay) T&)

C. Scaling of “helicity” (65)
When the anisotropic tensors introduced earlier are al-
lowed in Eq.(44), the dispersion relatiof61) may be spe-  qyjit £ (65) in two by requiring that the left and right sides

- . . . V V .
cialized taking e'the'MFV*V] or M[S*,S"], but not mixed \anish independently. This gives two equations formally
argument couples. This assures-A=u—u and that the jdentical with Eq.(59). The solution for each of them, i.e.,

ratios in brackets depend only enand\, throughAq and  §,(\,) andig(\g), can then simply be read off from Fig. 2
Ay introduced in Eqs(17) and(29). The result is effectively  or calculated from Eq(61). Then Eq.(65) is an additional

Sincehy# \g, and therefore.,+\qg#Ag+\;, One may

an equation foi set of constraints. Sincey—\y#Ag—\g in this case, Eq.
. . - (51) is interpreted as a system of two equations Xgrand
Al(hy) XN, 1) =Ag(Ny) x(m,N) (590 \g. But the additional isotropic relatiof66) renders this

system overdetermined. It was checked that indeed no “ei-
genvalue”\ g exists such that both relations betwegpand
\g could hold simultaneously.

Other ways of balancing terms and exponents are pos-

sible. For examplehy,—\y=Ag—\g can be required in Eq.

with a single parametex. Only two solution branches for
M[V,V] are acceptable at=¢{, in Eq. (52), but one of the
branches is unphysical, since for alivalues it gives too low

and somewhere even negativis (as seen in Fig.)2for the
scaling of the “helical component” of the velocity structure

: ; : (64), leading to x(\y.,Ag)+(Qa/Qy)(hy/hg) x(Ag.Ay)
Egg;g?\?ésselecmg the upper branch and usiigfrom Eq. =0, whereQg/Qy is a function of 8(Ag). This gives one

equation, say foiBy=hy/hg. Then the terms in Eq.65)
R ~0.830 (60) may be split into couples, and a balance is required for each
Ve e couple individually. There are three ways of doing this, and

As an illustration of the algebra involved, here is the exact” gach case ther.e are three equations: A balance of powers,
solution forh., in that branch: which effectively involves onlyy, Ag, Ay, and\g, and
v two equations involving couples gfs as well asB/ 3, . But

R ) =[ 160+ 80u3+ 2 2(60— ko) + u(158— ko) +192  there are only two unknowns to solve fary andig. There
results a set of eigenproblems, each member being defined

+(ko—1)%1(k3K0) 1, (61) by a choice among the three ways of balancing and of argu-
ment triples such ag§ S’,B],[V,Q],[B,J]}, as in Sec. IV B.
rol ) =[ ey + real — 3rcp) V2113, Again Eq. (56) is the overdetermining constraint, but Eq.
(61) is no more valid. Unfortunately, there seem to be no
Kka(w)=3(7+2pu), solutions to these equations either.
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V. FINAL REMARKS The expectation that there are two attracting values for the
ntturbulent plasmg motivated a search for criteria that could

The main resuits of this paper are the scaling expone select a couple ofwell separated, positiyes8 eigenvalues

predictions(52) and (60), respectively, for the isotropic and from the spectrum given by E56), or by its “mirror im-

_hellcal part of the velocity structure function in neutral, _age” given by Eq.(25) in [15]. It was found that, as far as
incompressible, homogeneous turbulence. The correspondlril tropic scaling is concerned. the presented model allows
vorticity scaling exponents are found as by-products. As exfor anp “beta” mgeasured in a tu1rbuler?t MHD to be related to
pected, the anisotropic part of the velocity correlation grows y

faster with increasing distance, or in other words, the smallef UMaue value f_rom e|§her of the.tv@ branches. A coupled
solution for the isotropic and helical parts of the MHD cor-

scales are statistically more isotropic. The velocity structurerela,[ion equations was souaht. but no solution to the helical
function scaling exponent corresponding to isotropic correla- q ught, o .
tions has been estimated experimentally{st=0.70. The part could be found. This seems to indicate, again to no
overshoot by the prediction, E52), proposed he're i's prob- surprise, that cross correlations are important to the helical
ably due to the neglect of cross correlation, rather than to thgarli Zfegumtgcvc\)/(r)rri:]e\‘/vﬁirl]:.to attempt an extension of the pre-
neglect of cumulants. Taking them into account may be ex- b g he p
pected to further increase the “anomalg3— 2/3 due to de sented approach to the problem of deriving the scaling expo-
2 = . . R
viations from Gaussianity. Since the present derivation dealgems. of anisotropic components .Of t_he ”e“tfa' turbulence
. . d gy . Velocity structure function. Expanding in spherical harmon-
directly with the generation of vorticity correlations by tur-

. . " ics, one may use the results frar4] together with kine-
bulent velocity, and since the positive anomaly found here_7". . . . .

) ) matic relations between the corresponding anisotropic com-
has the sign of the experimentally observed anomaly, the

; S ,gonents of vorticity and velocity autocorrelation to obtain
result can be interpreted as an indication that, to no one . 4 .
analogs of Eq(46). This should give an eigenvalue problem

surprise, a buildup of vorticity correlations is the mechanism - » .
. - . in each “anisotropy sector.” The resulting exponents should
behind the deviation from Kolmogorov scaling.

The observation of a range of positiye for which no predict a decay of correlations faster than that of isotropic

isotropic MHD scaling could be found, may correspond to ancomponents.

observed qualitativdichotomybetween lowg+ and highB+

turbulences observed MHD flow. This effect is summarized, ACKNOWLEDGMENT
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