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Second-order structure function scaling derivation from the Euler and
magnetohydrodynamic equations

Kamen N. Beronov
Graduate School of Engineering, Nagoya University, 464-8603 Nagoya, Japan

~Received 4 June 2001; revised manuscript received 15 April 2002; published 13 June 2002!

An anomalous scaling paradigm that has recently come to be canonical has two features limiting its range of
applicability: The driving and driven fields are separated dyamically and the driving field statistics is pre-
scribed, in terms of the~inertial subrange! scaling of its second-order structure functions and of white-noise
statistics in time. Then the spectrum of scaling exponents for the driven field, scalar or vector, depends
parametrically on the driving. Here, the coupling of turbulent vorticity to the driving velocity field is consid-
ered. Using simple approximations and no white-noise statistics assumption, equations are derived for the
evolution of two-point second-order correlations. The turbulent magnetohydrodynamic~MHD! case is treated
in an analogous fashion. In the neutral case, the kinematic coupling between vorticity and velocity leads to a
unique prediction for the scaling exponent of the second-order structure functions of the two turbulent fields.
The velocity scaling exponent estimate isz2531/221'0.732, i.e., close to experimental data. Unlike Kol-
mogorov scaling, this result is systematically derived from the Euler equations. The analogous scaling of MHD
fields is now treated beyond the dynamo theory approximation. In contrast to the uniqueness found in the
neutral case, predicted MHD scalings depend on one parameter, similar to the ‘‘plasma beta’’ parameterbT

relating kinetic to magnetic energy. The nature of predicted dependence of inertial-range scaling exponents on
bT agrees with an observed dichotomy between high-bT and low-bT turbulence regimes.

DOI: 10.1103/PhysRevE.65.066302 PACS number~s!: 47.27.Gs, 52.30.Cv
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I. INTRODUCTION

Basic notions and assumptions are borrowed from th
schools of turbulence modeling, in order to build a qua
linear theory forsecond-ordercorrelations ofsolenidalvec-
tor fields which arecoupledto turbulent velocity in such a
way that they influence directly its statistics. The theory
required to~1! predict the inertial-range scaling of secon
order structure functions of velocity and vorticity simult
neously; ~2! be systematically derived from the dynamic
equations, without adjustable degrees of freedom; and~3!
account for statistical feedback due both to nonlinearty
to nonlocality induced by the solenoidal projection involv
in the momentum equations.

This paper is limited to second-order correlations beca
these are of greatest interest in applications and also bec
much more effort and perhaps a different approach would
required to deal systematically with higher-order struct
functions.

The background, motivation, and outline of the propos
approach are given in the remainder of this section. The
sented result is argued to be a step in overcoming sev
hurdles that have so far kept one of the major problems,
of anomalous scaling of turbulent velocity, in turbulen
theory unsolvable. The paper contains only analytic com
tations. The necessary background from tensor calculus
used in homogeneous isotropic turbulence, is presente
Sec. II. It contains all kinematical relations needed later
Sec. IV, in particular, the relation between scaling expone
of vorticity and velocity correlations. An important point i
Sec. II is the argument that correlation decay and struc
function growth in the inertial range are given by the sa
exponent. The equation for the steady-state vorticity auto
1063-651X/2002/65~6!/066302~10!/$20.00 65 0663
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relation is derived in Sec. III employing two closure assum
tions. These two sections cover, respectively, the kinem
and dynamical aspects of the problem. Their results are c
bined in Sec. IV, where the ensuing relations between sca
relations are derived. Points of interest beside the sca
exponent of isotropic velocity structure functions~in Sec.
IV A !, are also the parallel between neutral and MHD d
namics~in Secs. IV B and IV C! and the scaling of helica
components of correlations~in Sec. IV C!. The results and
derivations are interpreted and discussed in Sec. V.

A. Three modeling approaches to developed turbulence

Estimates of turbulence statistics fall into several lar
categories, of which three are of interest here. The first
class of closure theories that provide evolution equations
two-point correlations. These are based on assumptions
quasi-Gaussianity for low-order statistics of turbulent velo
ity fields and on a corresponding low-order closure based
some ‘‘perturbative’’ approach~Ref. @1# critically reviews the
early work on that approach!. By construction these closure
are limited only to low-order moments and neglect the int
mittency due to flow structure. Their subject is the flow
energy~Ref. @2# provides a classical example and set of r
erences!. Their standard formulation is for homogeneous t
bulence, in terms of averaged Fourier mode interactions

The second category is that of ‘‘structural’’ models trea
ing small-scale vorticity fluctuations aspassively drivenby
larger-scale motions. Their natural formulation is in terms
physical-space flow configurations, at least for the lar
scale motions which are modeled as simply as possible.
nonlinear feedbackmechanism remains an issue open
modeling and discussion. One extreme of the ‘‘structur
approach is represented by the exact solutions of the Bur
©2002 The American Physical Society02-1
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vortex @3# kind, in which dissipative-scaleflow structure is
important and feedback is neglected. The statistical as
has always been at least part of the motivation for work
the ‘‘structural’’ approach, including classical solutions f
vortex tubes@3# and vortex sheets@4#.

At the opposite extreme, the effect of flow structures
described only in terms of high-order turbulence statistics
the ‘‘anomalous scaling’’ paradigm, their effect is measur
as deviation in power laws, by which structure functions
turbulent fields scale in space, from theoretical estimate
corresponding scaling laws for ‘‘structureless’’ rando
fields. The variety of models for such deviations pertinen
different turbulent fields constitutes the third ‘‘scaling’’ ca
egory.

Successful two-point closure models are compatible w
the best known among two-point statistics, the Kolmogo
scaling for the isotropic kinetic energy spectrum,E(k)
}k25/3, or alternatively, for the second-order velocity stru
ture function, SV(2ur )}r 2/3, where r 5(r•r)1/2 is the
~inertial-range! separation between two points at which t
velocity is measured. But they are by construction unable
address anomalous scaling. Successful ‘‘structural’’ mod
combining statistical and deterministic elements, are a
compatible with the classicalE(k), as shown first by
Lundgren@5#. Relatively successful ‘‘scaling’’ models ten
to involve heuristics about the physical-space structure
turbulent fields, which was the basic ingredient in the ‘‘stru
tural’’ models. The She-Leveque model@6# may be an ex-
ample. In particular, they predict allSV(2ur )}r z2 with z2
slightly larger than 2/3, a tendency established also by ac
measurements.

B. Anomalous scaling of velocity correlations

There is a large number of publications concerning
measurement of scaling exponents in Navier-Stokes tu
lence and producing models to fit these observations. Ve
ity structure functions scale with different powerszq depend-
ing on their orderq:

Sa
V~qur!5^uva~x1r!2va~x!uq&x;r zq

v
. ~1!

Velocity componentsa51, 2, 3, are taken with respect to th
direction of r, which will be assumed to correspond toa
51. A dimensional isotropyassumption is implicit when the
Sa

V(qur) dependence is simplified to a scaling law inr.
S1

V(qur ) is called the~orderq) longitudinalvelocity structure
function andS2

V(qur )5S3
V(qur ) the correspondingtransverse

structure function. Acomponental isotropyassumption is im-
plicit in the latter equality. Whether both longitudinal an
transverse structure functions of the same order scale
precisely the same exponent, as implicit in the notation
Eq. ~1!, remains an open issue. Under certain conditions
theoretical prediction is that they do, while measurements
not conclusive. This issue is beyond our present range
interest; some related references are briefly discussed in@7#.

The anomalous scalingissue is about measuring and r
tionalizing the deviation of these exponents from thezq

v

5q/3 scaling. The famous ‘‘4/5 law’’ givingz351, complete
06630
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with explicit proportionality constant in the scaling law, is a
exact result due to Kolmogorov. Except for this special ca
q53, the above Kolmogorov scaling forzq

v is based only on
a dimensional argument and is known to fail experimenta
Representative experimental and numerical results can
found, e.g., in Refs.@8–10#. As for models, it was already
mentioned that incorporating more turbulencephenomenol-
ogy can improve model predictions. Below are discuss
theories based on the explicit use of the dynamical equati
rather than only on heuristics, for inertial-range scaling e
ponents of passive scalar and ‘‘passive magnetic’’@magneto-
hydrodynamic ~MHD! dynamo regime# fields. But such
fields do not feed back on the driving velocity field who
statistics are~conveniently! prescribed in such models.

To the author’s knowledge~see also@11#! there is no ve-
locity scaling theory forzq

v with qÞ3, derived by explicit
use of the incompressible Navier-Stokes equations~NSE!.
The main result of the present study@Eq. ~52! below# is an
analytic derivation of the isotropic velocity scaling expone
z2

v based only on two explicit, qualitative, approximation a
sumptions and, on theexplicit use of the dynamical equa
tions.

C. Rigorous theories of anomalous scaling

Recently, the theory of anomalous scaling of structu
functions of passively advected fields based on dynam
equations has enjoyed great progress. Much has been e
lished not only for the classical case of isotropic turbulen
but also for the scaling of anisotropic components of tw
point statistics. A recent overview@12# of the passivescalar
field case contains the set of basic results and referen
Further general results can be found in@13#. The scaling of a
passivevector field is more complicated to compute. Th
scaling of second-order correlations of a general anisotro
passively advected~MHD dynamo! vector field was reported
in @14#. The isotropic case was solved@15# earlier.~The ear-
liest works on dynamo theory, for which@16# serves as an
example and reference source, are concerned with the a
age of the magnetic field itself, i.e., with single-point, firs
order statistics. There are, of course, both fundamental
technical similarities with the case of two-point correlation
A quite general viewpoint and list of references is offered
@17#.! Despite this progress, there are two aspects in wh
the literature on anaomalous scaling remains unsatisfact

First, the advecting velocity field is assumed to have
white-in-time autocorrelation. This means that thepassively
advected field has much longer memory than theactively
advecting velocity field. Such an assumption is of rather
stricted relevance as a physical model. Except for the cas
a scalar diffusivity much larger than viscosity, which is of n
interest in our inertial-range discussion, the scalar field c
relation scales should be~commensurate! functions of those
of the velocity field. The reason why the white-noise mod
was first introduced by Kraichnan@18# and then persisted in
the literature, sometimes slightly modified as, e.g., in@19#
and @16#, is that it greatly facilitates analytic treatment.

Second, analytic results concern only passively advec
fields. The NSE that governs the driving turbulence itself h
2-2
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remained largely without treatment, presumably becaus
two technical difficulties related to the particular kind
nonlinearity present in the underlying dynamical equation
~1! A quadratic coupling between the driven and drivin
fields, precluding any direct approach by the linear theo
mentioned above that yield elaborate results for pas
fields; ~2! the nonlocality of solenoidal projection, i.e., the
presence of a ‘‘pressure term.’’

Even if boundary and curvature effects are neglected~as
usual!, nonlocality remains in any of the forms~advection,
vorticity, velocity potential! in which NSE may be cast. In a
recent response@20# to problem 2, anomalous scaling wa
studied in a model equation including a pressure term
allowing for anisotropy. But even there, theadvectingveloc-
ity was white noise and its statistics were prescribed; o
those of a separateadvectedfield were solved for. The diffi-
culty of treating the pressure term was explicitly emphasi
in that work, which remained confined to the tw
dimensional case in order to alleviate some of the difficu
The present work was motivated by discussions with
authors of that model. Theory can actually be advanced
both aspects pointed out as unsatisfactory while the
mentioned technical difficulties are avoided rather than
tacked.

D. Quasilinear theories

Several recent attempts to model the small scales of
bulence have been very successful in capturing at leas
main qualitative features of statistically steady turbule
flows, including two-dimensional~2D! isotropic turbulence
@21,22# and 3D wall turbulence@23,24#. The essence of thes
quasilinear, or rapid-distortion~RDT! approaches is to mode
small-scale vorticity as passively advected by the veloc
field. An obvious motivation is that in flows with a deve
oped inertial range the peaks of energy and enstrophy sp
are located beyond the opposite ends of that range
thereby widely separated. Since energy flows in 3D towa
smaller scales, where the vorticity peak is, it can be assu
that the field structure of vorticity is irrelevant to the spat
distribution of energy, which is dominated by the large-sc
flow eddies. But vorticity is coupled to velocity, both kine
matically and dynamically, so there must be at least astatis-
tical mechanism for a feedback. Different publications res
to a variety of conceptual models of this feedback~including
the no-feedback case! and to a corresponding variety of fo
malisms.

In this paper, the spatialcross-correlationsbetween veloc-
ity and vorticity is assumed to benegligiblecompared to the
product of velocity and vorticityautocorrelations. This is
made only for the purpose of approximating two-point, lo
order, inertial-range correlations. It is essentially a quasi
ear assumption motivated by the above separation-of-sc
argument. Solving for the vorticity scaling allows one
avoid any consideration of pressure and pressure-velo
correlations: While the equation for the second-order vel
ity autocorrelations involves the nonlocality of the NS
through a pressure-strain correlation, that for thevorticity
autocorrelations involves instead an implicit coupling of vo
06630
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ticity and velocity autocorrelations. The latter is a kinema
relation, leading to a simple relation between the scaling
ponents of the two autocorrelations.

The evolution equation for the vorticity correlation tens
is in a form identical with that of the MHD dynamo forma
ism. A prediction of isotropic magnetic-field correlation sca
ing in dynamo turbulence due to Ref.@15# gives aspectrum
of values depending on the scaling of the driving veloc
field. It agrees with the isotropic MHD scaling prediction
Sec. IV B below. Unlike dynamo theory, however, th
present paper deals with the coupling between MHD curr
and magnetic-field statistics in parallel with the vorticit
velocity coupling. The magnetic-field feedback through t
Lorenz force term is included, and magnetic energy is
longer assumed negligible. This leads to a qualitative ag
ment with an important feature observed in MHD turbulen
— a dichotomy between high-bT and low-bT regimes.

A major concern of this article is to relax the unphysic
assumption imposed on the ‘‘driving velocity’’ in Kraich
nan’s model, or its technical substitute in the form of a ‘‘lin
earization assumption,’’ found in various guises
@23,21,20#, and elsewhere. The linearization approach
those works models turbulence as a two-phase fluid sys
wherein the ‘‘small-scale fluid’’ is passively advected by t
‘‘driving fluid.’’ To avoid the need to justify and then carry
along a two-phase model, symmetries of the dynamical eq
tion are used here to make important truncations and t
only steady states are sought.

Some closure assumptions are unavoidable. The neg
of cross correlations mentioned already is supplemented
neglect of fourth order cumulants, as in classical clos
theories. Both assumptions can be given some empirical
port for second-order statistics over the inertial range
length scales, which is precisely our present subject.

II. KINEMATIC RELATIONS

Let v(x,t) and v(x,t) denote, respectively, the velocit
and vorticity fields. By definition,

“•v5“•v50, v5“3v. ~2!

The corresponding second-order, two-point, autocorrela
tensorsV andV are defined by

Vab~r,t !5^va~x,t !vb~x1r,t !&x ~3!

and similarly forVab(r,t). Averaging is over ensemble an
also, as indicated, over the flow domain. When the len
scales of the domain and the forcing are much larger than
scales of interest, these correlations tend to become isotro
and will hereafter be assumed such.

In the literature on anomalous scaling, the customary
position is not in terms of ‘‘bare’’ correlations such asVab ,
but in terms of structure functions~SF!. For example, the
second-order velocity SF is

Sab
V ~r!5^@va~x1r!2va~x!#@vb~x1r!2vb~x!#&x

5Vab~0!2Vab~r!, ~4!

using homogeneity in the second equality.
2-3
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KAMEN N. BERONOV PHYSICAL REVIEW E65 066302
To recover the notation of Sec. I, let

Sa
V~2ur !5Saa

V ~r !

with no index summation. In what follows, summation o
repeated indices is assumed throughout and the follow
shorthand notations are used:

r 5~r j
2!1/2, ] j5]/]r j ,

ja5r a /r 5] j r a .

Notej j
251 and]bja5(dab2jajb)/r , whence] jj j52/r and

]b(jajb)52ja /r .

A. Representation of isotropic correlations

Assuming isotropy say forV, its classical physical-spac
representation in 3D is

Vab~r,t !5dabgV~r ,t !1jajb@ f V~r ,t !2gV~r ,t !#, ~5!

gV~r ,t !5r 22] r r
2f V~r ,t !. ~6!

Due to isotropy, dependence on distance can be factored
f V and gV . Analogous relations hold for isotropicV, with
correspondingf V andgV .

Treating homogeneous statistics rigorously, one neces
ily works in a domain periodic in 3D space. The existence
well-behaved Fourier transforms for all considered fields w
be assumed. ThenV and its Fourier transformV̂ can be rep-
resented by

V̂ab~k,t !5 P̂ab~k!Q̂V̂~k,t !, ~7!

P̂ab~k!5dab2kakbk22, ~8!

gV~r ,t !52r 21] r r ] rQV , ~9!

f V~r ,t !522r 21] rQV , ~10!

with Q̂V̂(k) and its inverse transformQV(r ) being well-
behaved scalar functions. Analogous relations hold forQ̂V̂ .
From Eqs.~2! and ~7!, using the alternating tensor notatio
eabc in (a3b) j5eab jambn , one obtains P̂ab(k)Q̂V̂(k)
5kikjeaimeb jnP̂mn(k)Q̂V̂(k), which can be simplified and
transformed to physical space:

P̂~k!Q̂V̂~k,t !5P̂~k!k2Q̂V̂~k,t !, ~11!

P~r!QV~•,t !5~2¹2!P~• !QV~•,t !, ~12!

¹2PQ5Q2““•Q, ~13!

cVr 21QV~r !52¹2QV~r !52r 22] r r
2] rQ~r !. ~14!

Here I is the 3D unit matrix andcV is some constant.P
is kept on the left-hand side in Eq.~12! since it has a non-
trivial kernel: Span (r 2I ). A formal application of Eq.~12!,
neglecting the boundary conditions needed for proper inv
06630
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sion of2¹2, will only defineQV(r ) up to an arbitrary mul-
tiple of r 2, i.e., cVÞ0 in Eq. ~14!.

B. Scaling range isotropic form

Here we consider only the ‘‘scaling range’’ 0,r d!r
!r L , where r d is a dissipative length scale andr L is an
‘‘energy containing’’ scale, comparable to or smaller than t
box size. In this case it is possible and advantageous to
glect boundaries inr.

Correlations are expected to decay with distance in ph
cal space. In the scaling range, the decay is assumed
braic. Such scaling is expected to set in when statistics re
to a time-independent state. Denote the decay exponentV
by l̃.0. Then

gV5r 2l̃V, f V5r 2l̃V2/~22l̃V!, ~15!

QV52r 22l̃V/~22l̃V!2, ~16!

up to a constant multiplier. Boundaries have been neglec
here, and both integrations producingQV from gV have been
performed betweenr and`.

From Eqs.~16! and ~14!, requiring decay ofV, one ob-
tains the following analog of Eq.~16!:

QV /LQ~ l̃V!52r 22l̃V/~22l̃V!2, ~17!

LQ~a!5a2~a23!/~a22!,

l̃V5l̃V12. ~18!

With V;r 2l̃V decaying, Eq.~4! shows thatSV has to
grow with r. The standard assumption is that there is a sc
ing range whereSV;r lV with lV.0. The analogs of Eqs
~5! and ~15! are then

Sab
V ~r!5S0

Vr lV,Pab~lV ;j!, ~19!

Pab~l;j!5dab2jajbl/~21l!,

f SV~r !5r lV2/~21lV!, ~20!

gSV~r !5r lV,

and similarly forSV. It is noted that] j
2Pab(l12;j) cannot

be written asLP(l)Pab(l;j).
Later it will be seen that the equilibrium state equation

formally the same for bothV and SV. Here it will only be
verified for any coupleV andSV related by Eq.~4!, that

lV52l̃V ~21!

and, of course,lV52l̃V521lV , in an appropriate scaling
range. The argument is the same forgV ,gSV couples and
f V , f SV couples. Suppressing the suffix•V , consider g

;r 2l̃ andgS;r l. From Eq.~4! gS(r )5gS(0)2g(r ). Up to
an irrelevant prefactor, this reads in the scaling range
gS(r )5c2r 2l̃, where 0,c5O(1) is a constant. Nowr
2-4
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!1 in the scaling range, rendering the rational approximat
gS(r )5r l̃/(11r l̃c) acceptable. Comparison with Eq.~20!
gives Eq.~21!.

The above argument suggests to modify Eq.~20! into

gSV~r !5gSV~0!2r 2l, ~22!

f SV~r !5gSV~0!2r 2l2/~22l!, ~23!

QSV~r !5QSV~0!2gSV~0!~r /2!21r 22l/~22l!2, ~24!

and similarly forgSV , f SV , andQSV . In particular,

QSV5l2$gSV~0!1gSV~0!~r /2!22r 2l@1/~22l!11#%.

In the special casel52, the velocity correlations are no
anomalous and thejajb term is absent fromV and SV . If
l50, the same assertions apply to the vorticity field inste
The terms representing anomalous scaling are absenf
5g) in those cases when their denominators would vani

C. Representation of helicity

Relaxing the isotropy constraint on a tensor means tha
scale dependence can no longer be expressed only usin
traceQ̂(k) or Q(r ). Since Tr@Q̂(k)# is invariant to rotations
of the k-coordinate system, a minimum extension is to
clude another such invariant. The simplest among f
choices is

ĥab~k,t !5eab j ı̂kj ĥ~k,t !, ~25!

hab~r,t !5Hab~j!h̃8~r ,t !, ~26!

Hpq~j!5epq jj j . ~27!

Here ĥ is the Fourier transform ofh̃, h̃85]h̃/]r , ı̂ is the
imaginary unit andemn j is the alternating tensor.

Unlike Tr(Q̂), hab(r) is not reflexion invariant. Strictly
speaking, helicity is related only to the real part ofĥ(k), but
both ĥ(K) andh5h̃8(r ) will be loosely referred to as ‘‘he-
licity.’’ Incompressibility does not restricth: eab j]ajbh50
always holds. The relation between scaling of helical a
isotropic parts of correlations will be considered later on
may be helpful while following some computations in Se
IV to note that

ea jme jbn5dabdnm2dandbm , ~28!

Hab~j!jajb50,

] j
2r 2sHab~j!5LH~s!r 2s22Hab~j!, ~29!

LH~a!5s~s21!,

]m]nr s@Ham~j!Hbn~j!#50, ~30!

]m]nr s@Hab~j!Hmn~j!#50, ~31!
06630
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]m]nr s@Pam~l;j!Hbn~j!1Pbn~l;j!Ham~j!#

5~s21!r s22~Hab1Hba!50, ~32!

]m]nr s@Pab~l;j!Hmn~j!1Pmn~l;j!Hab~j!#

5@3~s21!22~s12!l#r s22Hab~j!. ~33!

Using Eq.~28!, the analogs of Eqs.~11! and~12! are found to
be ĥV̂(k)5k2ĥV̂(k) and hV(r )52] j

2 hV(k). In the scaling
range, the relation betweenhV andhV is then given by Eq.
~29!: If hV5r 2l̃V then hV5LH(l̃V)r 2l̃V with l̃V5l̃V12
as before. However,LH differs from LQ given in Eq.~17!.

III. DERIVATION OF A STEADY-STATE EQUATION

Our subject is inertial range scaling, so the dissipat
term in the vorticity evolution equation is omitted:

] tv5~v•“ !v2~v•“ !v. ~34!

This corollary of the Euler equations is formally identic
with the inviscid MHD equation for the magnetic inductio
b, but the latter must be coupled with either the moment
or vorticity equation of MHD. Upon normalization,

] tb5~b•“ !v2~v•“ !b, ~35!

] tv5@~v•“ !v2~v•¹!v#2@~ j•“ !b2~b•“ !j #,
~36!

j5“3b, “•b5“• j50. ~37!

The analogy between Eqs.~35!,~37! and~2!,~34! is exploited
in dynamo theory by neglecting the Lorentz term in Eq.~36!,
so that it becomes the same as Eq.~34!, on the assumption
that u j u!uvu.

A. Equations for steady-state correlations

From Eq.~34!,

v~x,t !2v~x,0!5E
0

t

~v•“ !v~x,t!dt

2E
0

t

~v•“ !v~x,t!dt.

Repeating this forv(x1r ,t) and recalling Eq.~3!, one ob-
tains the spatially local equation

Vab~r ,t !5Vab~r ,0!1E
0

t

Vab
[1]~r ,t!dt

1E
0

tE
0

t

Vab
[2]~r ,t1 ,t2!dt1dt2 , ~38!

Vab
[1]~r ,t1!5^va~o,0!v j~1,1!vb, j~1,1!&2^va~o,0!v j

~1,1!vb, j~1,1!&1^vb~1,0!v j~o,1!va, j~o,1!&

2^vb~1,0!v j~o,1!vb, j~o,1!&, ~39!
2-5
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Vab
[2]~r ,t1 ,t2!5^v j~o,1!va, j~o,1!vm~1,2!vb,m~1,2!&

2^v j~o,1!va, j~o,1!vm~1,2!vb,m~1,2!&

1^v j~o,1!va, j~o,1!vm~1,2!vb,m~1,2!&

2^v j~o,1!va, j~o,1!vm~1,2!vb,m~1,2!&.

~40!

Notations like

va~o,• !5va~x,• !,

va~1,• !5va~x1r ,• !,

va~2,• !5va~x2r ,• !,

used in averages with respect tox, and

va~•,1!5va~•,t1!,

va~•,0!5va~•,0!,

va, j5] jva ,

are introduced for brevity. Using homogeneity and Eq.~2!,
the term in the first brackets in Eq.~39! can be rewritten as
] jWa,b j(2r ), where

Wa,b j~6r !5$va~6,0!@v j~o,1!vb~o,1!2vb~o,1!v j~o,1!#%

is antisymmetric inb, j . Starting from the general form

Wab j5W31jajbj j1~W21jadb j1W22jbd ja1W23j jdab!

1~W01eb jpja1W02e japjb1W03eabpjb!jp ,

where all Wpq are functions ofr and t, application of the
incompressibility condition gives (11r ] j )W0 j50 whence
W0 j50 for j 51,2,3. Antisymmetry reduces the coefficien
of isotropic terms:Wa,b j(2r )5W(r )(j jdab2jbda j). Thus
] jWa,b j5dab(W81W/r )2jajb(W82W/r ). The term in the
second brackets in Eq.~39! can be rewritten as] jWa,b j
(1r ). But W(r ) is even, so the two terms sum to zero a
Vab

[1]50 from symmetry considerations only. Sinc
Vab

[1] (r ,t1)5t2@Vab
[2] (r ,0,0)1O(t)#, Eq. ~38! transforms, us-

ing homogeneity again, into

] t
2Vab~r !5] j]mMab jm~r ,t !, ~41!

Mab jm~r ,t !5@^v j~o!va~o!vm~1 !vb~1 !&

2^v j~o!va~o!vm~1 !vb~1 !&

1^v j~o!va~o!vm~1 !vb~1 !&

2^v j~o!va~o!vm~1 !vb~1 !&#. ~42!

Only single-time correlations appear in Eq.~42!.
At this point, an approximation can be made by negle

ing fourth-order cumulants or modeling them in terms of t
second-order statistics directly solved for in the model
will reduce all terms inM(r ,t) to products of second-orde
06630
t-

t

moments. This reduction is in the spirit customary in tw
point closure theories dealing only with turbulence spec
e.g., Kraichnan’s direct-interaction approximation
Orszag’s eddy-damped quasinormal Markovian closure@1#.
The expectation, which can only be justified by compari
theoretical predictions to experimental data, is that fl
events leading to a deviation from Gaussian statistics
more or less the signatures of dissipative-scale vortic
structures and therefore not expected to influence sig
cantly the lowest-order inertial-range statistics. Approxim
tions of this quasinormal nature are clearly not applica
when the scaling of high-order structure functions is inve
gated, because anomalous scaling is a manifestation o
increasing degree of non-Gaussianity of the velocity sta
tics going downward in the inertial range. Even if limited
second-order statistics only, one is confronted with seri
difficulties in modeling adequately the neglected terms in
case of anisotropic turbulence. But our present topic is c
fined only to second-order isotropic statistics, so makin
high-order closure assumption is at least not obviously
reasonable. Hereafter, fourth-order cumulants will be
glected outright. This is the simplest and crudest approxim
tion, notorious for being shown~a posteriori! to fail in the
spectral theory of isotropic turbulence. How good or bad i
for the present purpose, however, or as a matter of cou
for strongly anisotropic turbulence spectral computatio
can be found out againa posteriori. Before that, there is no
compelling reason to introduce any modeling of the n
glected cumulants. Several decades of experience in spe
theory have shown that such modeling is rather demand
both technically and in terms of justifying its underlying a
sumptions and parametric choices.

Although cross correlations entering the result will
only single-point ones, their contribution does not vanish u
less ^va(o)vb(o)&5^vb(o)vb(o)&. Instead of insisting on
such an equality~which obviously does not hold in general!,
an order-of-magnitude argument can be made, based on
perimental observations; it then leads to a second appr
mation, invoked in order to dispose of the cross correlatio
for which a separate equation must otherwise be kept alo
One such observation by this author concerns statistics f
direct numerical simulations~DNS! of 3D isotropic turbu-
lence at 5123 resolution, for which a detailed account st
remains to be published. Fourier spectra of cross correlat
were computed and seen to be strongly fluctuating. But th
‘‘envelope spectra’’ can be defined reasonably well over
inertial and dissipative ranges and appear close to, but be
the corresponding velocity spectra, by about an order
magnitude. Of course, vorticity spectra are orders of mag
tude larger in those ranges and growing with wave numb
This suggests to neglect cross correlations as being ‘‘sm
compared to autocorrelations.

To summarize, the present derivation is based on negl
ing all ~i! fourth-order cumulants and~ii ! cross correlations.
Within the applicability range of both~qualitative! assump-
tions,

Mabmn@V,V#~r !5@Vab~r !Vmn~r !1Vab~r !Vmn~r !#

2@Vam~r !Vnb~r !1Vam~r !Vnb~r !#.

~43!
2-6
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It is possible to putM@SV,SV# instead ofM@V,V# into Eq.
~41!, since] j]mM(r )5] j]m@M(r )2M(0)#. It is also pos-
sible to putM@SV,V# instead, substracting fromMabmn(r )
the terms^v j (o)va(o)vm(1)vb(0)& and ^v j (o)va(o)vm
(1)vb(0)& which vanish under the action of]m and
then adding the termŝ v j (1)va(o)vm(1)vb(1)& and
^v j (1)va(o)vm(1)vb(1)& that vanish under] j .

This nonuniqueness in the choice of statistics invites
use of ^V,V& as a place holder for any possible couple
‘‘velocity,’’ ‘‘vorticity’’ statistics, in that order, as indicated.
Then Eq.~41! suggests the steady-state equation

“¹:M@V,V#50. ~44!

Precisely the same equation would follow from the MH
induction equation ifV is to be understood as the magnet
field autocorrelation, and if the cross correlation between
‘‘driving’’ velocity and the ‘‘driven’’ magnetic field is ne-
glected on the basis of an analogous justification. The M
vorticity equation can be treated similarly. The complete
of steady-state equations in the MHD case then reads

“¹:M@V,B#50,

“¹:M@V,V#5““:M@B,J#, ~45!

again subject to possible replacement ofV by SV, B by SB,
etc., in any occurrence ofM.

IV. SCALING PREDICTIONS

At the outset, let the scaling ofV;r 2m be formally in-
dependent from that ofV;r 2l, to allow derivations to be
reused in the MHD case. For convenience, let

l1m5s1 , s11252s0 ,

l/~21l!1m/~21m!52s2 .

With these notations, recalling Sec. II B and ignoring co
stant factors, the isotropic scaling version of Eq.~44! is

] j]mMabmn@V,V#/25] j]mr 2s1@~da jdbm2dabd jm!

1s2~jajbd jm1j jjmdab2jaj jdbm

2jbjmda j!#5@s1~s221!1s2#

3@2s1Pab~s0 ;j!r s0#. ~46!

When s150 the term2s1Pab(s0) is replaced by 2jajb .
The isotropic eigenvalue relation becomes

l/~21l!1m/~21m!52~l1m!/~l1m11!. ~47!

When helicity is taken into account, the scaling forms
the tensor arguments ofM@V,V# are

V~r!5QVr 2lP~2l;j!1hVr 2l̂H~j!,

whereQV andhV are now constant, and similarly forV(r).
Inserting these on the right-hand side in Eq.~45! gives sev-
eral contributions as follows. From isotropic parts only, E
06630
e
f

e
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f

.

~46! multiplied byQVQV , from helical parts only, terms tha
vanish due to Eq.~31!; from cross multiplication of helical
and isotropic parts,

] j]m$QVhVr 2(l1m̂)M@P~2l;j!H~j!#

1QVhVr 2(m1l̂)M@P~2m;j!H~j!#%

52@QVhVr 2(l1m̂12)x~l,m̂ !

1QVhVr 2(m1l̂12)x~m,l̂ !#H~j!. ~48!

The form of x in Eq. ~48! results from Eqs.~32! and ~33!,
which imply together with Eq.~44!

] j]mM@r lP~l;j!,r mH~j!#52x~2l,2m!H~j!, ~49!

x~l,m!5~312l!~l1m!1~324l!. ~50!

From Eqs.~44!, ~46!, and ~48! follows a ‘‘dispersion rela-
tion’’ for l̂ and m̂ in terms ofl andm:

~hV /hV!r l2l̂x~l,m̂ !1~QV /QV!r m2m̂x~m,l̂ !50.
~51!

Depending on the relation betweenV andV , this equation
may either be split in two:x(l,m̂)50 andx(m,l̂)50, or
otherwise, it is sure that there is a relation betweenl andm
independent from Eq.~51!.

A. Scaling of isotropic correlations

Now V may be interpreted as thevorticity correlation.
Anticipating the outcome, considerM@SV,V# replacing
M@V,V# in Eq. ~46!, thus making the associationl5lV and
m5l̃V . In addition, the constraintl̃V52(lV12) holds in
view of Eqs.~18! and~21!. In that case one of the solution
to Eq.~47! in terms oflV is negative, which is unacceptab
for a structure function scaling. Thus we are left only with

z2'lV531/221'0.732. ~52!

Instead ofM@SV,V# it was possible to useM@V,V# or
M@SV,SV# or M@V,SV# in Eq. ~46!, the difference being only
that m̃→m or l→l̃. With these substitutions Eq.~47! re-
mains formally the same, but the additional constra
changes. Only one more physically acceptable solution
be obtained after checking all possibilities:lV5(2/3)1/2

'0.8165 fromM@V,V#. In comparison with Eq.~52!, it pre-
dicts faster decay of correlations with increasing distancr,
leaving Eq. ~52! as the prediction for actually observab
scaling.

Kolmogorov scaling meansz25lK52/3. A list of recent
experimental results onz2 might include the following esti-
mates: 0.68860.002 form a 5123 DNS with Rl5218 @8#,
0.708 for atmospheric surface layer atRl510 340 and error
bar illegible@10# but presumably of the same order as abo
l l50.70 andl t50.68 with differentiation between longitu
dinal and transverse exponents, for surface layer data@9#
2-7
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with Rl5103 40–148 60 and error bars ‘‘difficult to quan
tify’’ but conservatively bounded by60.02. The cited mea
surements suggest an experimentallE50.7060.01 if l l is
used as ‘‘isotropic value.’’ The deviation oflK andlV from
this lE is 24.7% and 4.6%, respectively.

Thus, prediction~52! is quantitatively as good, or as ba
as the Kolmogorov scaling, but qualitatively better in t
sense that it predicts the direction in which the anomal
exponent deviates fromlK . The overestimate is rather sma
in view of the approximations made. Indeed, anad hoc
modificationm5l12.062 would yieldlV50.7002; this is
to be compared with thead hocsubstitution of̂ Dv(r )3& by
^uDv(r )u3& which is empirically'^Dv(r )3&1.05 according to
@10#. SincelE are frequently estimated using the extend
self-similarity hypothesis that introduces^Dv(r )3&, the error
of such measurements can thus be comparable, in princ
to its difference from theory.

B. Isotropic MHD

In Eq. ~45! a triple of arguments$@V,B#,@V,V#,@B,J#%
appears. All triples obtained from it by substituting any nu
ber of tensor arguments by their structure function coun
parts should be considered, e.g.,$@SV,B#,@V,V#,@SB,SJ#%,
$@SV,SB#,@SV,V#,@SB,J#%, etc. Recalling again Sec. II B
each of the three terms in each case can be obtained from
~46! by a triple of appropriate redefinitions ofs1 , s2, ands.
The resulting eigenvalue problem is then cast in the form
algebraic equations, given by

r~l1
V ,l1

B!50, ~53!

r~l2
V ,l3

V!5br~l2
B ,l3

B!, ~54!

together with the definition

r~a,b!5~a1b11!@a/~a12!1b/~b12!#22~a1b!,
~55!

and a set of linear relations betweenl j
V andlV , and between

l j
B and lB . „The value ofb21 in the present context is

related to the MHD ‘‘beta’’ measuring the ratio of tota
kinetic to total magnetic energy, but the relation is dif
cult to quantify and need not be universal. To be prec
the second equations in Eqs.~45! and ~53! predict
@bLQ(lB)/LQ(lV)#1/2 as the ratio between magnetic an
kinetic correlations.… Two possible approaches to such a s
tem are either to solve for all variables, includingb, raising
the problem of its interpretation, or to require a solution va
for any b, thus splitting the second equation into a pair
independent equations:r(l2

V ,l3
V)50 andr(l2

B ,l3
B)50. For

any of these approaches, and for each instance of an a
ment triple, a set of several solutions is obtained. Each s
tion has to be checked and rejected if it includes imagin
values, or if the sign of eitherl j

V or l j
B is not as expected

from the imposed relation withlV ,lB , that is, if a structure
function scaling turns out negative or a correlation dec
exponent turns out positive. In some cases, not a single
lution but a one-parameter family of solutions is obtaine
which have to be scanned for admissibility at least over
06630
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physically reasonable range of eitherlV or lB between 0 and
say 3. The solution can rarely be represented convenient
terms of eitherlV or lB as free parameter.

Clearly the search for acceptable solutions is tedious
thus error prone. To the extent to which this author has b
able to deal with it, there are only three kinds of solution
First, lB5lV531/221 as in Eq.~52!. This solution arises
from $@SV,B#,@SV,V#,@SB,J#% and is valid for anyb. Sec-
ond,lB5lV5(2/3)1/2 as in the second value obtained in th
nonmagnetic case. This comes from$@V,B#,@V,V#,@B,J#%
and is also valid for anyb. Finally, a parameter-depende
family of solutions arises from$@SV,B#,@SV,V#,@SB,J#%
whenb is allowed to be part of the solution:

lV~lB!5~lB1D23!/2, ~56!

b~lB!5~lB /lV!~11D2lB!~11D1lB!21, ~57!

D~lB!53~11lB2/32lB
2/3!1/2, ~58!

shown in Fig. 1. The solution agrees with the scaling~52! in
the limiting case of vanishing velocity field 1/b50) as seen
at the crossing of dotted and dash-dotted lines in Fig. 1,
of course in the limit of nonmagnetic turbulence (b50). As
in the nonmagnetic case, the fixed value (2/3)1/2 can be dis-
carded in favor of 31/221, which in turn is to be compared t
the value oflV from theb-dependent solution. The qualita
tive outcome is a plausible prediction that the same sca
as in nonmagnetic turbulence holds, except for sufficien
‘‘low-beta’’ flows. Complex behavior is predicted in th
b-range wherelV,z2,lB .

Due to the equations’ symmetry, there is another solut
in which lV and lB exchange roles. This is the solutio
given by @15#. In it, the magnetic correlation has longe
range than the velocity correlation, andb21 is proportional
to the MHD ‘‘beta’’ parameterbT . But the qualitative out-
come remains the same. In@15#, only Eq. ~53! was consid-
ered, without coupling to Eq.~54!, and nobT dependence
was found. The appearance ofb is clearly due to the Lorenz
force coupling.

Other qualitative features of the solution are worth noti
~i! lV,lB throughout.
~ii ! For lV<z2, which is the range of interest here,lV

andlB are close to each other. This meansLQ(lB)/LQ(lV)

FIG. 1. Isotropicb-dependent MHD scaling; dots, nonmagne
lV531/221; solid curve,lV(lB); dash-dotted,b(lB) with vertical
line indicating 1/b50.
2-8
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is close to 1 and the use ofb from Eq. ~57! is sufficient for
the present qualitative discussion.

~iii ! The extremesb50 andb→` are present in the so
lution and exponentsl become arbitrarily close to zero a
b→1 ~presumably corresponding to ‘‘low-bT’’ turbulence!.

~iv! The rangeb,0 is unphysical, while a small range o
positive values is not covered byb in this solution.

A more in-depth evaluation of the present result requi
comparison with scaling data from MHD turbulence at va
ous ratios of kinetic to magnetic energy. Such compari
remains beyond the scope of this paper.

C. Scaling of ‘‘helicity’’

When the anisotropic tensors introduced earlier are
lowed in Eq.~44!, the dispersion relation~51! may be spe-
cialized taking eitherM@V,V# or M@SV,SV#, but not mixed
argument couples. This assuresl̂2l5m̂2m and that the
ratios in brackets depend only onl̂ andl, throughLQ and
LH introduced in Eqs.~17! and~29!. The result is effectively
an equation forl̂

LH~ l̂V! x~l,m̂ !5LQ~lV! x~m,l̂ ! ~59!

with a single parameterl. Only two solution branches fo
M@V,V# are acceptable atl5z2 in Eq. ~52!, but one of the
branches is unphysical, since for alll values it gives too low
and somewhere even negativel̂ ’s ~as seen in Fig. 2! for the
scaling of the ‘‘helical component’’ of the velocity structur
function. Selecting the upper branch and usinglV from Eq.
~52! gives

l̂V'0.830. ~60!

As an illustration of the algebra involved, here is the ex
solution for l̂V in that branch:

l̂V~m!5@16m4180m312m2~602k0!1m~15825k0!1192

1~k021!2#~k3k0!21, ~61!

k0~m!5@k11k3~23k2!1/2#1/3,

k3~m!53~712m!,

FIG. 2. Solution branches for ‘‘helicity’’ scaling in a vorticity
velocity ~or current-magnetic field! dependence~solid line! and a
Padé~3:3! approximation to it~dotted line!. The unphysical lower
branch is shown by a dashed line.
06630
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k1~m!58m3~8m3160m21138m1119!25~294m2

11569m1115!, ~62!

k2~m!58m3~32m81208m71944m612540m512948m4

13265!229195m213564m15184. ~63!

To enable some of the computer algebra in the case discu
next, this solution had to be Pade´ approximated, as shown b
a dotted line in Fig. 2. Calculations and plotting were do
usingMATHEMATICA .

When anisotropic tensors are allowed in the MHD ca
the relation betweenlV , lB, andb through Eqs.~56!–~58!
must be accounted for. From Eqs.~45! and ~51! follow

~hB /hV!r l̂V2lVx~lV ,l̂B!1~QB /QV!r l̂B2lBx~mB ,l̂V!50,
~64!

@~hV /hV!r lV2l̂Vx~lV ,l̂V!

1~QV /QV! r lV2l̂V x~lV ,l̂V!#r 22(lV1lV11) hVQV

5b@~hJ /hB! r lB2l̂B x~lB ,l̂J!

1~QJ /QB! r lJ2l̂J x~lJ ,l̂B!#r 22(lB1lJ11) hBQB.

~65!

SincelVÞlB , and thereforelV1lVÞlB1lJ , one may
split Eq.~65! in two by requiring that the left and right side
vanish independently. This gives two equations forma
identical with Eq.~59!. The solution for each of them, i.e
l̂V(lV) andl̂B(lB), can then simply be read off from Fig.
or calculated from Eq.~61!. Then Eq.~65! is an additional
set of constraints. Sincel̂V2lVÞl̂B2lB in this case, Eq.
~51! is interpreted as a system of two equations forlV and
lB . But the additional isotropic relation~56! renders this
system overdetermined. It was checked that indeed no
genvalue’’lB exists such that both relations betweenlV and
lB could hold simultaneously.

Other ways of balancing terms and exponents are p
sible. For example,l̂V2lV5l̂B2lB can be required in Eq
~64!, leading to x(lV ,l̂B)1(QB /QV)(hV /hB) x(lB ,l̂V)
50, whereQB /QV is a function ofb(lB). This gives one
equation, say forbH5hV /hB . Then the terms in Eq.~65!
may be split into couples, and a balance is required for e
couple individually. There are three ways of doing this, a
in each case there are three equations: A balance of pow
which effectively involves onlylV , lB , l̂V , and l̂B , and
two equations involving couples ofx ’s as well asb/bH . But
there are only two unknowns to solve for:l̂V andl̂B . There
results a set of eigenproblems, each member being defi
by a choice among the three ways of balancing and of ar
ment triples such as$@SV,B#,@V,V#,@B,J#%, as in Sec. IV B.
Again Eq. ~56! is the overdetermining constraint, but E
~61! is no more valid. Unfortunately, there seem to be
solutions to these equations either.
2-9
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V. FINAL REMARKS

The main results of this paper are the scaling expon
predictions~52! and ~60!, respectively, for the isotropic an
‘‘helical’’ part of the velocity structure function in neutra
incompressible, homogeneous turbulence. The correspon
vorticity scaling exponents are found as by-products. As
pected, the anisotropic part of the velocity correlation gro
faster with increasing distance, or in other words, the sma
scales are statistically more isotropic. The velocity struct
function scaling exponent corresponding to isotropic corre
tions has been estimated experimentally atz2'0.70. The
overshoot by the prediction, Eq.~52!, proposed here is prob
ably due to the neglect of cross correlation, rather than to
neglect of cumulants. Taking them into account may be
pected to further increase the ‘‘anomaly’’z222/3 due to de-
viations from Gaussianity. Since the present derivation de
directly with the generation of vorticity correlations by tu
bulent velocity, and since the positive anomaly found h
has the sign of the experimentally observed anomaly,
result can be interpreted as an indication that, to no on
surprise, a buildup of vorticity correlations is the mechani
behind the deviation from Kolmogorov scaling.

The observation of a range of positiveb for which no
isotropic MHD scaling could be found, may correspond to
observed qualitativedichotomybetween low-bT and high-bT
turbulences observed MHD flow. This effect is summariz
e.g., in Ref.@25# for astrophysical data as well as for DNS
MHD turbulence. It can crudely be described as follow
Statistically steady states fall into two distinct groups: eith
b,1 but remainingO(1), or b@1; transient states with
intermediateb evolve to whichever steady state is ‘‘closer
pp
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The expectation that there are two attracting values for
turbulent plasmab motivated a search for criteria that cou
select a couple of~well separated, positive! b eigenvalues
from the spectrum given by Eq.~56!, or by its ‘‘mirror im-
age’’ given by Eq.~25! in @15#. It was found that, as far a
isotropic scaling is concerned, the presented model allo
for any ‘‘beta’’ measured in a turbulent MHD to be related
a unique value from either of the twob branches. A coupled
solution for the isotropic and helical parts of the MHD co
relation equations was sought, but no solution to the hel
part could be found. This seems to indicate, again to
surprise, that cross correlations are important to the hel
part of autocorrelations.

It seems worthwhile to attempt an extension of the p
sented approach to the problem of deriving the scaling ex
nents of anisotropic components of the neutral-turbule
velocity structure function. Expanding in spherical harmo
ics, one may use the results from@14# together with kine-
matic relations between the corresponding anisotropic c
ponents of vorticity and velocity autocorrelation to obta
analogs of Eq.~46!. This should give an eigenvalue proble
in each ‘‘anisotropy sector.’’ The resulting exponents sho
predict a decay of correlations faster than that of isotro
components.
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